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ON THE THEORY OF COUPLED LOSS OF STABILITY 
IN STIFFENED THIN-WALLED STRUCTURES* 

A.I. MANEVICH 

A system of the principal nonlinear approximation equations is obtained for the problem 
of loss of stability is stiffened thin-walled structures in the presence of finite displace- 
ments, taking into account the presence of a set of local modes with critical loads differing 
little from each other. A concept of "modified" local modes is proposed, allowing an estima- 
tion of the mode interaction already in the first nonlinear approximation. The possibilityof 
simplification of the final system of equations, taking into account the fact that the local 
mode length is short compared with that of the overall mode, is shown. It is establishedthat 
within the framework of the principal nonlinear approximation every localmodeinthe stiffened 
plates and shells interacts with the overall mode, but there is noexplicitinteraction between 
the local modes themselves. A theorem is proved establishing the correlation between the 
system with one, and with many local modes. The problem of stabilityofacompressedstiffened 
plate, i.e. of a wide strut, is solved as an example. The proposed theory can be applied to 
structures almost equally stable when no local waves form up to the momentofcoupledbuckling. 

The study of coupled buckling modes in stiffened plates and shells engagedinrecentyears 
the attention of anumber of authors fl.,2/ give the bibliography. Every one of them, however, 
dealt only with the interaction of two buckling modes, the overall and the local mode. Separa- 
tion of a single overall mode is justified since the spectrum of overall modesisusuallyscarce. 
The local modes, however, usually have short wave lengths and a sufficiently dense spectrum. 
A question arises, whether the inclusion of a still larger number of interacting local modes 
will not lead to increasingly larger reduction in the value of the critical load. Thequestion 
of an efficient method of solving the problem of coupled buckling is also important. From the 
approximate solution of the problem for a stiffened plate and cylindrical shell /2--/andthe 
general qualitative analysis /5/ it follows that the interaction between the overall and local 
modes in stiffened structures becomes dangerous only when the general flexure takes place in 
one of two possible directions (relative to the stiffeners). Therefore, in the presence of 
the general oscillatory wave formation the coupled buckling zones must alternate with the 
single-mode buckling zones where no waves form locally. On changing the sign of the overall 
flexure, every zone is expected to pass from the single-mode buckling branch to the coupled 
buckling branch and vice versa, and this passage leads to kinks in theresultingload-displace- 
ment curves. Non-differentiability at the salient point makes the asymptotic Koiter method /6, 
71 based on expanding the load into a power series in terms of the displacement amplitudes, 
inefficient. When this method is used /8/ to solve a problem for a stiffened shell, all third 
order terms in displacements and their derivatives, appearing in the potential energy term, 
vanish by virtue of the periodicity and symmetry, and the effect of mode interaction is dis- 
covered only when the problem is solved in a higher degree of approximation. 

The Ritz method is found suitable for solving the problem of coupled buckling. The dis- 
placement field is given, with due regard to the manner of wave formation described above, in 
the form of a sum of the overall mode and the modified local modes of the linear problem 
Ui*:ui*= ai or ui*= 0 (i>i) depending on the sign of the overall displacement. The conditionof 
absence of the discontinuities in the force and deformation factors demand that an additional 
field u,** appearing near the nodes of the overall mode is imposed on the field ui*. This 
state should have the character of a boundary layer and its contribution towards the overall 
energy of the system can be neglected, since the length of the local mode is short compared 
with the overall mode. Such an approach, used in the approximate solution /2,4/ is close to 
the "mode modulation" method proposed by Koiter in /5/ and makes possible the investigation 
of the mode interaction already in the first nonlinear approximation since the third order 
terms in the energy functional are preserved. 
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1. Basic equations. Let us consider a stiffened structure for which the overall and 
local buckling modes can be separated (under the local mode we understant the buckling during 

which there is no transverse displacement of the sheathed stiffeners). It is assumedthatthe 
spectrum of the eigenvalues for the overall modes is sufficiently scarce, so that we can limit 

ourselves to considering a mode with the smallest eigenvalue &. Let us assume that n local 

modes can be singled out, with the eigenvalues h,(s = 2, . . ..n + 1) close to hr. We construct 
the energy functional of the system by separating the principal linear and nonlinear terms, 
using the compact notation and a number of results of the general asymptotic theory of stabil- 

ity /6,7/. Let U, E, (J denote the tensor translation, deformation and stress fields. The 
primary stress-deformation state determined by the equations of the linear theory of elastic- 

ity is assumed to depend linearly on the load parameters h (of the field hu,, h~~,ho~). The 
geometrical and elasticity relations can be written in the form 

E = I, (u) + 'iz 1, (u), u = H (E) (1.1) 

where 1, and Hare linear operators and I, is a quadratic operator. Denoting by (S.E thework 
done by the stress field c on the deformation field E, we write the potential energy of the 

system in the form 

CD = 'i, 0.E - ha,.l,(u) (1.2) 

(o’e__;\‘o,jeijdV=S(N~E,+2N,~, + Nypy + M,xz $ 2nl,Xxv + hJ,xJ 4 
s 

where the second term is equal to the work done by external forces expressed in terms of the 

internal forces, with the state of equilibrium a, taken into account. Repeated indices denote 

summation. 
Let us assume that a linear problem of stability has been solved and the eigenvalues hi 

together with the forms ui(i= 1,2, . .., n f 1) found. The forms are assumed to be normalized 

in some manner, by e.g. the condition that the maximum displacements are equal to the shell 

thickness. The orthogonality (relative independence) of these forms is expressed by the con- 

dition 
IS,.l,,(Ui, Uj) = 0 (or Oi.2, (Uj) = 0), i fj (1.3) 

where l,, is a bilinear operator associated with the operator 

1, (U) la (u + u) = 1, (u) + 21,1 (u, u) + 2, (u) I,, (u, u) = 1, (u) 

In the nonlinear problem we write the displacement field in the form 

U = au, + j,U, + &* 
x>o 

us*= u,E(+&), E(x) = (2;: X<O 

(1.4) 

Here and in what follows, the repeated index s (and also r) denotes summation from 2 to n+ 1, 

and the indices i,j, k the summation from 1 to n + 1. The sign of E, in the unit function E is 
assigned in the course of solving the problem. 

According to (1.1) the displacements (1.4) have the corresponding deformation and stress 

fields (the asterisk accompanying u, will, from now on, be omitted for simplicity) 

E = ha0 + Siei + EiEjeijv a = ho0 + &Oi + Ei&ffij 
(1.5) 

(ei = II( Et, = r/z l,,(Ui, Uj), uz = H (e,), CT~, = H (Eij)) 

Substituting (1.4) and (1.5) into (1.2) and using the relation expressing the mutualityofthe 

works H (E~).E~ = H (E~).EI, we obtain the following expression for the energy ( the fourth order 

terms in Ei are neglected, and this corresponds to the domain of applicability of the expres- 

sion (1.4)): 
26, = --h*a,e, + E,:j[hO,.Z,,(Ui, Uj) + uieil + SiEjSkUilll(Ujr UK) (1.6) 

The assumption that the wave lengths of the local modes are small compared with the overall 

mode, enables us to simplify the expression (1.6). The mutual cancellation of the integrals 

over the segments with different direction of the local flexure (within the limits of a single 

half-wave of the overali mode), implies that all terms of the functional @depending on the 

odd power of the displacements of the local mode either vanish, or become negligibly small 

Oi'l,, ("jY uk) = O (1.7) 

except in cases when one of the indices is equal to unity and the other two coincide. Accord- 

ing to this rule we can also accept as valid the orthogonality relations (1.3) for the modi- 

fied local modes u,*. Taking this into account, we obtain the expression (1.6) fortheenergy 

in the form 
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(1.8) 

a, = ---1/&=u~ * E,, Q= - hiUo*E,(U*), bi = ~,*ls (ui) + 2~i* 1x1 (~1, u{) 

The last term in (1.8), which describes the influence of the initial imperfections over all 
forms E;, is introduced in accordance with the results of the general theory /6,'7/(the field 
of initial imperfections is assumed to have the form i7. = &). 

The following eigenvalues of the linear problem were used in (1.8): 

hi = -0,-t, (Ui)iU,*E~ ($A$) 

The above relations are obtained from (1.6) by leaving in the expression for @ the quadratic 
terms only. They contain the modified local modes Q, but the specific features of the 
local modes imply that the values Xi can be assumed as equal to the exact eigenvalues of the 
linear problem, i.e. ~3 in these formulas can be regarded as the exact linear modes. We note 
that if the overall mode is symmetric and periodic if onlyinasingle direction, then a,&(~,)= 
0 identically (e.g. in the case of stiffened plates when more than one half-wave form in the 
longitudinal or transverse direction,and in the stiffened shells). Then the expression for 
the energy il.81 contains no terms with EIS. 

The conditions of stationarity of the potential energy lead to the following system of 
nonlinear equations (summation over s is not implied): 

(1.9) 

The structure of the expression (1.8) for@ which does not include the products GL (r, a> 1) 
shows, that under the assumptions (1.7) adopted the local modes do not interact explicitly 
with each other (the implicit interaction manifests itself through the interaction of every 
local mode with the overall mode). The systems in which one mode interacts with the remaining 
modes, the latter not interacting explicitly with each other, can be described as systemswith 
simple interaction. The stiffened plates and shells refer , within the limitsoftheprincipal 
nonlinear approximation, to systems of this type. 

The condition of stability of the equilibrium branch is represented by the positive 
definiteness of the second variation of the potential energy, and this requires that the 
Jacobian of the system (1.9) be positive 

M-1 ntt 

(1.10) 

The Jacobian .i vanishes at the limit point corresponding to maximum load, and at the points 
of bifurcation. The equality to zero of every &under the product sign corresponds, as the 
second equation of (1.9) implies, to the bifurcation point, in the absence of the initial 
deflection over the corresponding mode $,, = 0, and we have h/h, = i f b&/a,. If all E, = 0 
then, as we see from the second equation of (1.9) every A%, appearing under the product sign 
no longer vanishes and the condition that the Jacobian be zero, yields the relation 

The sign of the coefficients b, in the equations obtained depends on the choice of sign in 
the unit function E(di:f,) when the local modes in (1.41 are modified. The sign is chosen 
from the condition b&,-CO (only then the interaction of the s-th mode with the overallmode 
leads to reduction in the value of the limiting load), 

(1.11) 

2. Analysis of the solution. When the initial deflection occurs only in the over- 
all mode (gLfO, E,=O) two types of solution of (1.9) exist: 

a)Sa=O(s~2,3,...,n-i_1), &fO, 

i.e. the equilibrium branch is situated in the space h,&,...,&,+r on the plane h- E1, b) 
all Ei are different from zero. The corresponding branches are naturally called noncoupled 
and coupled (we note that the overall buckling can be noncoupled, but the local one cannot). 
When the initial deflection over the Local modes is present, only coupled bucklingispossible 
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(this follows from the second equation of (1.9)). 
Let us consider, for the general case, the limit point h = h, on the equilibrium branch 

described by the system of equations (1.9), (1.11). We shall limit ourselves, for simplicity, 
to the case when b, = 0 (symmetric characteristics on the overall mode). Eliminating E, from 
the above system we can write it in the form 

(2.1) 

The structure of system (2.1) enables us to prove, under a single assumption concerning the 
functions Q,(h,&) formulated below, the following theorem which establishes a definite re- 
lationship between the system with a single, and with nlocal modes. 

Theorem. The limiting value h, for a system with nlocal modes is not smallerthanthe 
limiting value h,(") of a system with a single, most dangerous local mode, with the initial 
deflection Ep = I/~&I, where & = max&. 

We shall call pthe equivalent deflection. Under the most dangerous local mode we shall 
understand the mode (with the index s = k) for which the limiting load under an equivalent 
deflection will be smallest (for all s). The values h*(*) for every s and the corresponding dis- 
placements gi(*) can be found from 

Let us first note the following properties of the quantities entering the equations (2.1) 
and (2.2): 

1) the following inequalities hold (we consider thelimiting load lying below the bifurca- 
tion points): f&)-O, A,> 0; 

2) we can assume without loss of generality that 

&;-. 0, 51 ), 0, b, < 0 (b,S, < 0); (2.3) 

3) P,(h, El) and Q8(h, 2*) under the conditions (2.3) increase monotonicallyineach of their 
arguments; 

4) P,(h, El) is a monotonically increasing function for the values of h lyingonthe stable 
segments of the equilibrium branch. This follows from the fact that, as we see from (2.11, 

8P, (A, E,)l& = Q,(L E,), aF,(L 3% = F, & 5,) (2.4) 

and the function s,(h, 51 ) is positive in the interval O<h<h*. An analogous assertion 
holds for F,(") (1, El); 

5) Fz(")(h, E,) and F, (h, 5,) are monotonically decreasing function of 51 and h. This fol- 
lows from the properties 2) and 3). 

To prove the theorem, we write the second equation of (2.2) in the form 

(2.5) 

(the argument accompanying E1 indicates that this quantity is connected with the value h,("J by 
the first equation (2.2)). For the k-th mode with the smallest h *ck) the quantity Qk (h ('1 &('I) %?, I' , 
must have its maximum value with respect to s 

Qr [h$', ~~~)(~~~'j] > C, [h(" @')(A@))] * S *>1 * 9 s= 2?,3,...,n -I- 1 (2.6) 

We shall now assume that the above condition holds not only for the limit points, but also for 
all h lying on the stable segment of the equilibrium branch in accordance with the first equa- 
tion of (2.1), i.e. when 0 Q h< h, and 0 < El < El (A,) 

Qr (h, 51) 2 Q, 6% El) (s = 2, 3, . ., n f 1; 0 < A ==I h,) (2.7) 

Integrating the inequality (2.7) with respect to E1 from Oto & corresponding, in accordance 
with the first equation of (2.1) to some value of h, and taking (2.5) into account, we obtain 
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P,I~,E,(~)],>P,L~,~,(~)I(s=~,~ ,..., n+i,ogh~U 

From (2.8) and (2.7) it follows that for O<L<&) we have 

n+1 
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(2.8) 

(2.9) 

Equating the left-hand sides of the first and second equations of (2.1) and (2.2),respectiv- 
ely, we obtain the following relations for the points lying on the equilibrium branch: 

Since on the equilibrium branch F,(k,&) = 0, it follows from the first inequalityof (2.9) 
and property 41, that the displacement E1 ck) determined for a given L from the first equation 
of (2.2), cannot be smaller than E1:&(k)> El. But if we replace in the right-hand sideofthe 
second inequality of (2.10) El by EICk) then, according to the property 5) the inequality will 
become stronger 

F, [h, 51 @)I > F&k) Ih, E1'"' @)I (2.11) 

For all ?, <h,(k) we find that when the right-hand side of this inequality is greaterthan 
zero, so is the left-hand side, i.e. the limit value &which makes F,[h,&(h)l equal to zero 
cannot be smaller than A,@), and this proves the theorem. 

The assumption used in the proof, which enabled the passage from the inequality (2.6) to 
(2.7) to be made, was required to justify (2.9). When this assumption fails, aweakertheorem 
can be proved in which the equivalent deflection is understood to be 

Then the first inequality of (2.9) (and other inequalities following from it) will hold at 
li. = h,irrespective of whether (2.8) holds or not. The results of solving concrete systems 
(some of them are given below) show that when the conditions (2.7), (2.8) are violated, the 
theorem remains valid in its initial form. This is explained by the fact that the inequality 
(2.11) obtained by consecutive strengthening of the series of inequalities remains validwhen 
(2.7) is violated, provided that the magnitude of II, does not appreciably exceed unity. 

The proved theorem can be used to reduce the systems with n local modes to a system with 
a single local mode. In a particular case when the deflections are the same for all modes, 
the equivalent deflection is found to be v; times smaller than the sum of the amplitudes of 
all deflections at 'II, = 1. 

3. Interaction of two modes. When a single local mode with a symmetric character- 
istic on the overall mode (b, = 0) is considered, it is expedient to perform the followingtran- 
sformation (the subscript 2 denotes the local mode): 

The potential energy @ (1.8) and the system of equations of equilibrium (1.9) assume the fol- 
lowing form in the new variables: 

(3.2) 

(3.3) 

The condition that the Jacobian is equal to zero is reduced, for the limit or birfurcation 
point (1.11) to 

(1-+)(1-+,)-22=0 
(3.4) 

The potential energy is even in z2 (semisymmetric systems). Equations of the type (3.3) (writ- 
ten in the variables EL,&) were studied earlier in connection with the problems of buckling 
in smooth spherical shells /9/ and stiffened panels of the type of wide struts /lO,ll/. The 
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analysis of the equilibrium branches of such systems with the imperfections present only in 

the first mode was given in /12/. We note that in contrast to the papers mentionedabovethe 
coefficients di in (3.1) were computed according to the modified local mode except in cases 

when the displacement over the overall mode does not alter its sign. 

Eliminating z1 from (3.3), we obtain an equation of the projection of the equilibrium 
branch on the h -z2 plane 

The value h = h, for the limit or bifurcation point is determined in the course of eliminat- 
ing z2 from (3.4), (3.5) 

(3.6) 

The corresponding displacement over the local mode is 

Z? = [(I _$-j* F,]l’a (3.7) 

The solution of equation (3.6) which yields h, as an implicit function of the imperfection 

parameters :1 and f, (the surface of sensitivity to the imperfections) is easily obtained us- 

ing the method of iterations. 

4. Stiffened plate under compression. We consider as an example a problem of 
stability of a plate stiffened with equally spaced ribs of rectangular cross section, under 
compression in the direction of the ribs. The loaded edges are assumed to be hinged, and the 

load-free edges are free (wide strut). In the case of thin ribs the exact description of the 

linear local modes requires that the ribs be treated as plates. Such a solution was obtained 

in /11/ in contrast to /lo/ et al. where the rib was regarded as a rod. All authors, however, 
when solving the nonlinear problem, took into account only a single local mode corresponding, 

as a rule, to the minimum eigenvalue. Below we give the results of the computations, taking 

into account the set of local modes with critical loads close to the minimum load. The coef- 

ficients of (1.9), (1.11) were found from the formulas given in /ll/. A plate with the fol- 

lowing parameters was considered (Fig.1) : tllcl = 0.05; tplc,= 0.028; 0 = t*c*/tnc, = 0.1; c*/L = 0.3859. The 
dimensionless stress (J"= o.103/E (E is the modulus of elasticity) was taken as the load para- 

meter h. The critical stresses for the local modes G,,,' for various half-wave numbers m al- 

ong the length are depicted by the solid curve 1 in Fig.2. Two relative minima correspond to 

the modes with half-wave length of the order of the distance between the stiffeners (111 = 3) 
and of stiffener height (m= 7). The dashed line 1 depicts the data obtained for the linear 

problem using the rod scheme for the ribs (in analogy to /lo/). Below we give, for various 

modes, the values of oMO and the ratios TV,/IV, where 18, is the panel displacement amplitude 

(halfway between the ribs) and W,is the rib edge displacement 

m 3 i 5 6 7 8 9 

SNO 2.Y40 2.794 3.117 3.006 2.848 2,845 2,955 3.14Y 
I1','lYp 1.023 0.756 6.279 0.048 0.014 4.6.10-3 1.8.10-3 0.8.10-3 
d, -5.0.10-3 0.658 n.535 1.440 i.600 1.609 1.547 1.448 
d, -9.7.10-3 0.1513 0.529 0.925 1.424 1.964 2.498 2.998 
0;o ?.tiY7 2.182 1.578 1.111 O.YS? 0.933 0.933 0,964 

At sufficiently large m we have 1Vps IIT0 and the mode can be classified as "local buckling 

of the stiffener". 
In computing the nonlinear case the amplitudes of the initial deflection & = 0.25 and 

the equivalent local deflection p= 0.25 were given (the amplitudes are relative to the panel 

thickness). First the interactions of the overall mode with each of the local modes were 

considered one by one. The dimensionless limit stresses are shown by the solid line 2 in Fig. 

2. The values of the coefficients di and limit stresses a*" are given above. For comparison, 

Fig.2 shows the results of the computations carried out according to the scheme using rod-type 
stiffener (dashed curve 2). As expected,this approach can be used at small values of m when 

the displacements of the panel are sufficiently large, but yields erroneous results in the 

case of "local stiffener buckling". Curve 3 depicts the results of /2/ where an approximate 

solution was obtainedusing a provisional model of attachment of the stiffener to the panel. 

It was assumed that cl,- 0.5; cz= 0 (the solution in /2/ takes into account only the overall de- I 
flection). This solution was found satisfactory at large m. 
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Fig. Fig. 2 

After this we obtain a solution of the complete system of equations (1-P), (1.11) with 
nine modes m= 2.3,. ..,10 taken into account. The initial deflection in each mode was assumed, 

in accordance with-the given value of g, equal to f= 1112. The limit value as0 was found 
to be equal to 0.9684, which is larger than the value of CL+" obtained using a single mode m= 

8 with equivalent deflection (and the adjacent modes m = 7.9). 
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